FENStatS News

YS Webinar: Theory and Methods for Inference in Multi-armed Bandit Problems

event date: 2022-05-11

The eleventh “One World webinar” organized by YoungStatS will take place on May 11th, 2022

For decades, multi-armed bandit (MAB) algorithms have been argued as useful for conducting adaptively-randomized experiments. By skewing the allocation of the arms towards the more efficient or informative ones, they have the potential to enhance participants’ welfare while resulting in a more flexible, efficient, and ethical alternative compared to traditional fixed studies. However, such allocation strategies complicate the problem of statistical inference. It is now recognized that traditional inference methods are typically not valid when used in MAB-collected data, leading to considerable biases in classical estimators and other relevant issues in hypothesis testing problems. 

When & Where

📅Wednesday, May 11th, 7:00 PT / 10:00 EST / 16:00 CET. 

📍Online, via Zoom. The registration form is available here


Anand Kalvit, Columbia University: “A Closer Look at the Worst-case Behavior of Multi-armed Bandit Algorithms” 

Aaditya Ramdas, Carnegie Mellon University: “Safe, Anytime-Valid Inference in the face of 3 sources of bias in bandit data analysis.” 

Ruohan Zhan, Stanford University: “Inference on Adaptively Collected Data” 

Discussant: Prof.  Assaf Zeevi, Columbia University 

The webinar is part of the YoungStatS project of the Young Statisticians Europe initiative (FENStatS), supported by the Bernoulli Society for Mathematical Statistics and Probability and the Institute of Mathematical Statistics (IMS). For more information, please visit the YoungStatS project website.

Back to News